p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.5D8, C24.13D4, C23⋊C8⋊4C2, C4⋊C4.10D4, (C2×D4).15D4, C22⋊C8⋊2C22, (C22×C4).48D4, C22.15(C2×D8), C2.8(C22⋊D8), C23⋊3D4.2C2, C22.D8⋊1C2, C23.524(C2×D4), C22.SD16⋊7C2, C4⋊D4.9C22, C2.9(D4.9D4), C23.11D4⋊1C2, (C22×C4).13C23, C22.134C22≀C2, C22.42(C8⋊C22), C2.C42⋊5C22, C2.4(C23.7D4), (C2×C4⋊C4)⋊1C22, (C2×C4).202(C2×D4), (C2×C22⋊C4).96C22, SmallGroup(128,339)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C22 — C23 — C22×C4 — C2×C22⋊C4 — C23⋊3D4 — C23.5D8 |
Generators and relations for C23.5D8
G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=c, dad-1=eae-1=ab=ba, ac=ca, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 412 in 140 conjugacy classes, 34 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C2.C42, C22⋊C8, D4⋊C4, C2.D8, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C4⋊D4, C22.D4, C22×D4, C23⋊C8, C22.SD16, C23.11D4, C22.D8, C23⋊3D4, C23.5D8
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C22≀C2, C2×D8, C8⋊C22, C22⋊D8, D4.9D4, C23.7D4, C23.5D8
Character table of C23.5D8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | orthogonal lifted from D8 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ17 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | orthogonal lifted from D8 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ19 | 4 | 4 | -4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ21 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from D4.9D4 |
ρ22 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C23.7D4 |
(2 16)(3 20)(4 30)(6 12)(7 24)(8 26)(9 29)(10 21)(13 25)(14 17)(19 28)(23 32)
(1 15)(2 28)(3 9)(4 30)(5 11)(6 32)(7 13)(8 26)(10 21)(12 23)(14 17)(16 19)(18 27)(20 29)(22 31)(24 25)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 17)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 17 18 8)(2 7 19 24)(3 23 20 6)(4 5 21 22)(9 12 29 32)(10 31 30 11)(13 16 25 28)(14 27 26 15)
G:=sub<Sym(32)| (2,16)(3,20)(4,30)(6,12)(7,24)(8,26)(9,29)(10,21)(13,25)(14,17)(19,28)(23,32), (1,15)(2,28)(3,9)(4,30)(5,11)(6,32)(7,13)(8,26)(10,21)(12,23)(14,17)(16,19)(18,27)(20,29)(22,31)(24,25), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,18,8)(2,7,19,24)(3,23,20,6)(4,5,21,22)(9,12,29,32)(10,31,30,11)(13,16,25,28)(14,27,26,15)>;
G:=Group( (2,16)(3,20)(4,30)(6,12)(7,24)(8,26)(9,29)(10,21)(13,25)(14,17)(19,28)(23,32), (1,15)(2,28)(3,9)(4,30)(5,11)(6,32)(7,13)(8,26)(10,21)(12,23)(14,17)(16,19)(18,27)(20,29)(22,31)(24,25), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,17)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,17,18,8)(2,7,19,24)(3,23,20,6)(4,5,21,22)(9,12,29,32)(10,31,30,11)(13,16,25,28)(14,27,26,15) );
G=PermutationGroup([[(2,16),(3,20),(4,30),(6,12),(7,24),(8,26),(9,29),(10,21),(13,25),(14,17),(19,28),(23,32)], [(1,15),(2,28),(3,9),(4,30),(5,11),(6,32),(7,13),(8,26),(10,21),(12,23),(14,17),(16,19),(18,27),(20,29),(22,31),(24,25)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,17),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,17,18,8),(2,7,19,24),(3,23,20,6),(4,5,21,22),(9,12,29,32),(10,31,30,11),(13,16,25,28),(14,27,26,15)]])
Matrix representation of C23.5D8 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 16 | 0 |
0 | 0 | 16 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 15 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
14 | 3 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 13 | 4 | 13 |
0 | 0 | 4 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 13 | 0 | 13 | 0 |
14 | 3 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 13 | 4 | 13 |
0 | 0 | 0 | 0 | 4 | 13 |
0 | 0 | 13 | 4 | 13 | 0 |
0 | 0 | 13 | 0 | 13 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,16,16,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,15,16,1,1,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[14,14,0,0,0,0,3,14,0,0,0,0,0,0,4,4,0,13,0,0,13,13,0,0,0,0,4,0,0,13,0,0,13,0,4,0],[14,3,0,0,0,0,3,3,0,0,0,0,0,0,4,0,13,13,0,0,13,0,4,0,0,0,4,4,13,13,0,0,13,13,0,0] >;
C23.5D8 in GAP, Magma, Sage, TeX
C_2^3._5D_8
% in TeX
G:=Group("C2^3.5D8");
// GroupNames label
G:=SmallGroup(128,339);
// by ID
G=gap.SmallGroup(128,339);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,448,141,422,1123,570,521,136,1411]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations
Export